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FLOW OF GAS IN THE NEIGHBORHOOD OF AN AXISYMMETRIC VERTEX* 

1u.B. RADVOGIN 

The asymptotics of an axisymmetric flow near the vertex of a sharp conical body is 
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studied. Two classes of problems are considered; a supersonic flow with attached 
shock wave, and a flow with a stagnation point at the vertex independent of the 
behavior of the flow. In the first case a linearization of the type f = fo -I- r"f1 
relative to the purely conical flow leads to a some eigenvalue problem. Certain 
properties of the solutions are described. It is shown that the smallesteigenvalue 
is equal to zero for the largest possible (for a given A&) value of the cone half- 
angle p., In the second case an analogous linearization (relative to the state at 
rest) yields a spectral problem for the Legendre equation with condition that the 
solution is bounded. A relation describing the dependence of the smallest eigen- 
value p on fi is given. The value P = ptl, = 1.138, in particular, is found, for which 
p = 1. When p <Bu, aP/ar = 00 , at the cone vertex, while when fl > &,, ol'i~r := 0. A 
comparison is drawn between the asymptotics obtained and the results of solving 
numerically the problem of supersonic flow past finite pointed bodies with departed 
shock wave. 

1. Let a pointed axisymmetric body be streamlined by a steady homogeneous supersonic 
flow of inviscid, non-heat conducting real gas. The sharp end of the point represents a 
straight circular cone the axis of which is directed along the oncoming flow, and the shock 
wave is attached. Let us 
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(the concrete form of the matrix coefficients is, so far, not important), and the boundarycon- 
ditions at the shock wave and at the body. We write the solution near the vertex inthe form 

investigate the flow near the apex. The correspondingplaneproblem 
was dealt with in /l/. We shall use a polar (r,q) coordinate 
system with the center at the apex. The angle (pis counted from 
the cone axis. Let Xbe the column vector of the gasdynamic 
quantities u, v, P and p where u and V are the r- and v-velocity 
components, P is pressure and p is density. Let us denote by p 
the half-angle of the cone, and by cc the angle if inclination of 
the shock wave to the axis at the vertex (Fig.1). 

The solution satisfies the following system of gasdynamic 
eouations: 

A (X)$ + +B (X)+$ + +c(x,cp)=o (1.1) 

X (r, cp) = X0 (cp) + X1 (r, ‘~1 (1.2) 

where X0 describes an unperturbed motion consisting of a flow past an infinite cone with at- 
tached shock wave and X1 -+O as r -+U. Thus we have 

R(X,) dXe/dm + C(Xor (P) = o (1.3) 

Substituting (1.2) into (1.1) and neglecting the terms of higher order of smallness,wearrive 
at the homogeneous linear system 

R(S,)% + fs(x,)~++o(X,,yl)X1=O (1.4) 

The conical flow can be assumed given, therefore the coefficients in (1.4) areknownfunctions 
of 'p. 
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Let us fix the value of the Mach number of the incident flow (M,)and choose the angle 
a as the parameter of the problem. When a increases from its minimum value equal to arcsin 

(nrL),a moment occurs a = a* when the velocity in the conical flow becomes subsonic. This 
takes place at the cone surface MO@)= 1. Further increase in a leads to widening of the 
subsonic zone. At a = a, the zone arrives at the shock wave, i.e. M,(c) = 1. When a>a, , 

the conical flow is purely subsonic. 
Next we shall follow the behavior of the quantities e0 and p(e,, denotes the angleofturn 

by which the flow changes its direction on passing through the discontinuity). Both angles 
depend ona in a nonmonotonous manner. The angle El0 attains its maximum first (when a= 

"**>a*) I and then the angle p (when cc = a**) . Further increase in a is accompanied by de- 
crease on the value of both angles, and they both vanish at the limits of variation of the 
angle a . We note that in the plane case there are only two "critical" angles, since a* =a* 
and a** = a 

*** 
In what follows, we shall only consider the subsonic (partly or completely) 

range a>a* of the fundamental conical flow. 
Let us separate the variables in (1.4): X,(r, cp) = f(r) Y(rp)where f is a scalar. Weobtain 

A (X4 y (cp) g + 11 (X,) 5 $ -+ D (X,, $3) Y + =o 

From this it follows that rf-%f/dr =p is a constant, i.e. X, (r, cp) = rllY(cp) and 

A-’ (BdYldrp + DY) = +Y (1.5) 

To obtain the boundary conditions we take the polar equation of the shock wave in the form 
cp = a + A(r). Let $ denote the inclination of the wave to the cone axis. Then 

q=cp +ar++-a +;(rA) 

The value of X(rt 'P) behind the shock wave is determined by its inclination X(r, 9) = F(q), 
therefore we have 

X,(c) + TA(r)+X,(r,cz-+ -A(,', = 

dF (a) d (rb) 
F(a) + d~,dr 

since X,(a) =F(a) and ~a(r)=0(Xr(r,a)). we have 

Dividing (1.6) by A and replacing X1 by Roy, we obtain 

A&@)=-~ +2!L&+)* 
therefore A = w and we have 

Y(a)=-_ +(l+p)y 

(1.6) 

(1.7) 

The parameter P can be eliminated from the four relations (1.7), and this yields three linear 
bo 
Vl B) =0 y" 

dary conditions at Cp = c. At the other boundary((p = p) we have a single condition 
, .and we obtain the traditional eigenvalue problem in the class of bounded functions 

(only the positive values of CL relate to the initial problem). The basic question is that of 
the manner in which the eigenvalues ~1 and eigenfunctions Y,(q) depend on a ? We notethatthe 
negative indices have a definite sense; they correspond to the asymptotics as r--too for a 
body conical at sufficiently large r . In this case the eignnfunctions may be (and in fact 
are) unbounded at the body. 
V&) = 0. 

Therefore the condition vr(fi) = 0 must be replaced by lim(L;lnO - 
Q-6 

Let us formulate two assertions. 

1. The spectral problem under consideration has, at a>.a*, 
hW>O(m=O,I,. 

a simple discrete spectrum 
..) "generated at infinity" when a = a*, i.e. for all m pLm (a*) = 00. 

2. The function ~~(a) is defined right up to a = a**; ~~(a**)cO. The remaining 
Pm (a) > 0. 

The first assertion is accepted without proof, be referring to the numerical results and 
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to analogy with the plane case. Variability of the coefficients and the fact that the Sub- 
sonic region occupies, in the axisymmetric case, only a part of the space between the body 
and the shock wave, should not significantly influence the spectral properties. 

The second assertion needs proving and elucidation, since the analogous result for the 
plane flows cannot be transferred automatically; the angle a** (plane angle) "splits" into 
a** and a**. So, let Y(v) be the solution for p = 0. Then by virtue of (1.5) we have 

BdYJdq + DY = 0 (1.8) 

Therefore Y(p) is a solution of the system (1.1) independent of r, i.e. the solution repres- 

ents a conical perturbation of the conical solution. But such a perturbation can only be 
caused by variation in the value of the angle 01 of inclination of the wave. Therefore Y= 

dXo('~)/da (all gasdynamic functions depend parametrically on cc). In particular, at the cone 
surface we have 

Ocv, (6) +!! =LE$J +$ 
(1.9) 

Whencp=b, we have dv&@= -2~0 + 0 , therefore dv, (6)idp = -duo (fi)idq#O. Then from (1.9) it fol- 

lows that @/de = 0, i.e. a - cc** which completes the proof. Since a** represents the boundary 

separating the "weak" and "strong" shock waves, #is means that p. and p1 is the smallest 

index for the "weak" and "strong" wave respectively. We also note that p,,,(~/2)= 2m- 1. 

2. We solve the spectral problem numerically using the simplest procedure, namely rang- 

ing over p , and the Cauchy problem with initial values at the shock wave is solved for ~=a 
at every step. The equations and boundary conditions for determining X,are well known. A 

system of the type (1.5) for Y,(q) = (u,,v,,P,, p,)has the form 

(2.1) 

(co2 - 00~) VI’ = “o (~0% + 2~1) - ~0’ (Q - 2uouJ - co’ (k-, + ul) - Q (K, + uo) + p (‘lov,~, - co2% - ‘JaPoclh) 
(co2 - uo2) PI’ = Y [KOYOJ’I + PO (KPQ + Koq)l - PO’ (Q - Zv,u,) + p [,q, (vaol - u,v,) + uovplj 

Q = YPO-‘(PI --P,PO-IP,) t K,=u,+v,ctgcp K,=ul+vlctgT 

and the relations at the shock wave are 
"oPl$ POVl = - PoUo'- p&J, cost+ P(Po%-- Pu.!7, cosa) 
P, - (p,g, sin a) vL = pouqo [(v. + q, sin a) cos a + (u. + uo’) sin a] - 

PO’ + w, q, (4 + q, sin a) co3 a 

% = - (1$ p) (UO + go0 sin a) 

The systems (2.1) and (2.2) are closed by the equation 

Q -=o ~O%+vO~l+ ?_ 1 

(2.2) 

(2.3) 

which is a variant of the Bernoulli integral. The solution of the Cauchy problem (2.1) with 

initial values (2.2) presents no difficulties. Some care should be exercised when approach- 

ing the boundary cp -6, since the coefficient u. accompanying u,' vanishes at this boundary. It 

can be shown that every solution of the system (2.1) is bounded when PLO, and this allows the 

use of ranging. We have also studied the converse problem, i.e. the value of p,,, was specified 

(say po) and the corresponding value of a determined. This is needed e.g. for determining 

a++(p, = 0) or of the Crocco point a, (PO = 1). The numerical algorithm consists of ranging overa. 

Table 1 

1.5 

0.9535 
0.4419 
1.0866 
0.5095 

:*:::s 
Liz00 
0.5298 
1.2042 
0.5334 

2.0 2.5 

1.0000 1.0445 
0.6388 0.7463 
1.0781 1.0934 
0.6766 0,7707 
1.1287 1.1307 
0,697i 0.7857 
i,$364 1.1616 
0.6993 0.7953 
1.2115 1.2296 
0.7102 0.8049 

- 

I - 3.0 5.0 

1.0757 
0.8098 
1.1129 
0.8279 
I,1387 
0.8386 
1,180s 
0.8523 

1.1304 
o,so99 
1.1534 

XZ 
0:9245 
i.2i62 
0.9431 
1.2725 
0.9509 

10 

I,1572 
0,9557 
i.i752 

?KE 
0:9649 
1.2346 
0,985i 
1.2875 
0.9924 
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Table 2 

B 

0.4419 
0.4801 
0.5089 
0.5272 
0.5334 
0.5252 

z% 
013799 
0,27ii 
0.0000 

co 

623 
1.878 
0,586 
- 
- 

- 
- 
- 

30 
12,78 
7,665 
5,328 
3.932 
2,975 
2.269 
1.727 
1.306 
1,000 

>30 
23.78 
15.04 
il.12 
8.705 
6,975 
5.639 

f;*E 
3:ooo 

Table 1 gives various "critical" values of the angle of inclination of the shock wave, i.e. 
CC*, a,,a,,,a** and % , as well as the corresponding values of B. Table 2 demonstrates the 
dependence on a of three smallest indices p,,!~~,p: and the angle 6 for M, = 1.5. Figs.Za and 2b 
depict the functions pl(cp) corresponding to the first three positive valuds of P for a "weak" 
(M, = lO,ar = l.ZSi,fl= 0.992) and "strong" (M, = 10, a = 1.488.8 = 0.726) shock waves. The numbers 
correspond to the numbers of the 

Analysis of the results for 

Fig. 2 

eigenfunctions. 
various M, makes possible the assertion that the number of 
zeros of the function PI(cp) corresponding to P=P~, is n. 
This is also true in the plane case. Forthe remaining func- 
tions no such agreement with the plane flow exists,butnever- 
theless the number of zeros increases approximately as m. We 
note that the discrepancy between the solutions correspond- 
ing to the "weak" and "strong" shock waves is not so fund- 
amental as to allow the use of local analysis in postulating 
the nonexistence of the flows with "strong" waves. The fact 
that ~0 vanishes when a= a** was first discovered by numer- 
ical methods /2/. Some results relevant to the present 
problem were obtained in /3/. 

3. Let us consider the case fi>fi** in which the flow 
with attached shock wave becomes impossible. A subsonic 
shock layer of finite thickness is formed, and the tipofthe 
conical vertex becomes a stagnation point. Let us investi- 
gate the flow structure near the vertex using the notation 
and coordinate system of Sect-l. The solution satisfies the 
following system of equations: 

8:;) / ; ag) +$(2u+vctgcp)=O,~+ &$=B 

We write the solution in the form 

U = MUl (cp) + . . .; v = rail ($3) + . . .; (3.2) 

p = p, + +p, (cp) f . . .: p = PO + ‘qh (cp) + . . . 

where PO and PO are the pressure and density at the stagnation point. We restrict ourselves 
to the case of locally constant entropy. This assumption leads to the relation p, ('PUP, = 
Y&('p)/p,which replaces one of the equations of the corresponding system. Linearizing (3.1) 
with help of (3.2) and eliminating v, , we obtain 

ul" + u;ctg cp + v (v + 1) u1 = 0 (v = p/2 + 1) 

The boundary conditions are 

ul'(B) =o (%(B) =O), u,(n)<m 

Carrying out the substitution x =coS(p, we arrive at the final formulation of the eigenvalue 
problem. In order to stress the dependence on v, we introduce the lower index. We have 
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x=b = cos & uY(-*)<=J (3.3) 

solution of 13.3) yields UV@), and for v,,(x) we obtain 

(3.4) 

Equation (3.3) is a Legendre equation of order V. Its general solution is 

a, (2) = C,&(z) + C&%(z), v ;12- 1, ZE i---1, bl (3.5) 

where py and& are the Legendre functions of first and second kind. We use the asymptotic 
behavior of P, and QY near the point zs -3, and demand that &(--I) = -f. This yeids 

uv (2) = -COs vxPV (x) $ 2n-* sin vnQ, (z) (3.6) 

The condition of impermeability u,‘(b)= 0 determines the eigenvalue Y as the root ofthetrans- 
cendental equation 

-cosvn IbP, (b) - Py-1 (b)l+ 2~’ sin vn ibQ,s fb) -Qy_I (b)] =O (3.7) 

{here we have used the relation (1 -x*) dP,idx = Y(P~~ - ~9,) and the analogous relation forQ& 
In this manner the problem is reduced to that of solving the equation (3.7) for v and subse- 
quent determination of U,(X) and U,,(Z) in accordance with (3.6) and (3.4). We note that 
p (n/Z) = 2, p (0) = 0, therefore v (n/2) = 2, Y (0) = 1. 

Table 3 

:: 2.060 1.753 65 60 
80 1.532 55 

75 1.334 7@ 1.i55 2: 

Let us quote some results for the first, minimal eigenvalue. Table 3 gives the quantity 
p as a function of the angle fi. 
The computations yield flo, = 1.138. 

Let us single out the value p =~u~,atwhich p = 1 (v = 1, 5). 
Thus we have cc> 1 for n/2> p> &I) andthe function p(r,(~) 

is differentiable at the zero (and aPi& = 0 when r = 0). For p < &I) we have aP(0, ‘p)h = m 

(a -c 9. The velocity components always have a singularity, since the corresponding index 
(p/2) does not exceed unity. Fig.3 depicts the graphs nl (C)S % (9) and 2p,f~)/~, for 6 = 40". 

4. The data obtained explain certain specific features of the behavior of the gasdynamic 

8% 
o:ooi 

0.568 / 25 
0,460 j 
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functions observed in the course of solving numerically the problem of supersonic flow past 
finite pointed bodies with detached shock wave. To do this we use the results of 141, in 
which the authors studied a flow past a conically pointed body using a sphere as an exampleof 
such a body. The geometry of the problem is shown schematically in Fig.4, and plots of the 

pressure distribution P(6) along the body are given for various bodies: p =76,66, 60, 45'Ccurves 
1-4 respectively) for M, =: (the results for M, = 6 are similar). We note that the para- 

meters of the oncoming flow do not affect the asymptotics, since they appear only in the norm- 
alizing multipliers. It is clear that the difference mesh chosen for the purpose of solving 
these problems does not furnish any details about the behavior of the functions near the sharp 
end. However, the boundary 6= 6,,, is seen clearly: for 6 =45" and SO" aP(O)iae= 0 and for 

6 = 70" aP (O),Nl = 00. The case $ = 60' is almost boundary. 
The agreement between the behavior of the velocity and the asymptotics is also fully sat- 

isfactory. Thus, when VP=@ (at the body) the asymptotics can be well observed even when the 
mesh is sufficiently coarse. The situation becomes much worse at the stream line cp=n. Here 
the results of the numerical difference computations fail to disclose any singularities. This 
is apparently connected with the strong dependence on o, of the prolongation of the region of 
asymptotic behavior. In addition, the computational nodes lying on the stream line may have 
missed this region. 
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Fig.3 
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The asymptotics obtained 
may also be used in construct- 
ing numerical algorithms and 
in the study of boundarylayer 
near the sharp end. Here the 
singularity in the pressure 
distribution appearing at 
p <PO, must be taken into 
account. 

Fig.4 
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